Copied to
clipboard

G = C336Q16order 432 = 24·33

3rd semidirect product of C33 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial

Aliases: C336Q16, C12.31S32, (C3×C12).121D6, C337C8.1C2, (C32×C6).38D4, C324Q8.4S3, Dic6.2(C3⋊S3), (C3×Dic6).10S3, C32(C327Q16), C32(C322Q16), C2.7(C336D4), C6.23(D6⋊S3), C3211(C3⋊Q16), C6.11(C327D4), (C32×Dic6).3C2, (C32×C12).17C22, C4.18(S3×C3⋊S3), C12.15(C2×C3⋊S3), (C3×C6).89(C3⋊D4), (C3×C324Q8).2C2, SmallGroup(432,445)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C336Q16
C1C3C32C33C32×C6C32×C12C32×Dic6 — C336Q16
C33C32×C6C32×C12 — C336Q16
C1C2C4

Generators and relations for C336Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, dad-1=eae-1=a-1, bc=cb, dbd-1=ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >

Subgroups: 560 in 140 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C3⋊C8, Dic6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C3⋊Q16, C32×C6, C324C8, C3×Dic6, C3×Dic6, C324Q8, Q8×C32, C32×Dic3, C3×C3⋊Dic3, C32×C12, C322Q16, C327Q16, C337C8, C32×Dic6, C3×C324Q8, C336Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊S3, C3⋊D4, S32, C2×C3⋊S3, C3⋊Q16, D6⋊S3, C327D4, S3×C3⋊S3, C322Q16, C327Q16, C336D4, C336Q16

Smallest permutation representation of C336Q16
On 144 points
Generators in S144
(1 42 24)(2 17 43)(3 44 18)(4 19 45)(5 46 20)(6 21 47)(7 48 22)(8 23 41)(9 29 128)(10 121 30)(11 31 122)(12 123 32)(13 25 124)(14 125 26)(15 27 126)(16 127 28)(33 57 135)(34 136 58)(35 59 129)(36 130 60)(37 61 131)(38 132 62)(39 63 133)(40 134 64)(49 78 101)(50 102 79)(51 80 103)(52 104 73)(53 74 97)(54 98 75)(55 76 99)(56 100 77)(65 107 90)(66 91 108)(67 109 92)(68 93 110)(69 111 94)(70 95 112)(71 105 96)(72 89 106)(81 144 120)(82 113 137)(83 138 114)(84 115 139)(85 140 116)(86 117 141)(87 142 118)(88 119 143)
(1 72 11)(2 12 65)(3 66 13)(4 14 67)(5 68 15)(6 16 69)(7 70 9)(8 10 71)(17 123 107)(18 108 124)(19 125 109)(20 110 126)(21 127 111)(22 112 128)(23 121 105)(24 106 122)(25 44 91)(26 92 45)(27 46 93)(28 94 47)(29 48 95)(30 96 41)(31 42 89)(32 90 43)(33 79 113)(34 114 80)(35 73 115)(36 116 74)(37 75 117)(38 118 76)(39 77 119)(40 120 78)(49 64 144)(50 137 57)(51 58 138)(52 139 59)(53 60 140)(54 141 61)(55 62 142)(56 143 63)(81 101 134)(82 135 102)(83 103 136)(84 129 104)(85 97 130)(86 131 98)(87 99 132)(88 133 100)
(1 106 31)(2 32 107)(3 108 25)(4 26 109)(5 110 27)(6 28 111)(7 112 29)(8 30 105)(9 22 95)(10 96 23)(11 24 89)(12 90 17)(13 18 91)(14 92 19)(15 20 93)(16 94 21)(33 137 102)(34 103 138)(35 139 104)(36 97 140)(37 141 98)(38 99 142)(39 143 100)(40 101 144)(41 121 71)(42 72 122)(43 123 65)(44 66 124)(45 125 67)(46 68 126)(47 127 69)(48 70 128)(49 120 134)(50 135 113)(51 114 136)(52 129 115)(53 116 130)(54 131 117)(55 118 132)(56 133 119)(57 82 79)(58 80 83)(59 84 73)(60 74 85)(61 86 75)(62 76 87)(63 88 77)(64 78 81)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 61 5 57)(2 60 6 64)(3 59 7 63)(4 58 8 62)(9 56 13 52)(10 55 14 51)(11 54 15 50)(12 53 16 49)(17 130 21 134)(18 129 22 133)(19 136 23 132)(20 135 24 131)(25 73 29 77)(26 80 30 76)(27 79 31 75)(28 78 32 74)(33 42 37 46)(34 41 38 45)(35 48 39 44)(36 47 40 43)(65 140 69 144)(66 139 70 143)(67 138 71 142)(68 137 72 141)(81 107 85 111)(82 106 86 110)(83 105 87 109)(84 112 88 108)(89 117 93 113)(90 116 94 120)(91 115 95 119)(92 114 96 118)(97 127 101 123)(98 126 102 122)(99 125 103 121)(100 124 104 128)

G:=sub<Sym(144)| (1,42,24)(2,17,43)(3,44,18)(4,19,45)(5,46,20)(6,21,47)(7,48,22)(8,23,41)(9,29,128)(10,121,30)(11,31,122)(12,123,32)(13,25,124)(14,125,26)(15,27,126)(16,127,28)(33,57,135)(34,136,58)(35,59,129)(36,130,60)(37,61,131)(38,132,62)(39,63,133)(40,134,64)(49,78,101)(50,102,79)(51,80,103)(52,104,73)(53,74,97)(54,98,75)(55,76,99)(56,100,77)(65,107,90)(66,91,108)(67,109,92)(68,93,110)(69,111,94)(70,95,112)(71,105,96)(72,89,106)(81,144,120)(82,113,137)(83,138,114)(84,115,139)(85,140,116)(86,117,141)(87,142,118)(88,119,143), (1,72,11)(2,12,65)(3,66,13)(4,14,67)(5,68,15)(6,16,69)(7,70,9)(8,10,71)(17,123,107)(18,108,124)(19,125,109)(20,110,126)(21,127,111)(22,112,128)(23,121,105)(24,106,122)(25,44,91)(26,92,45)(27,46,93)(28,94,47)(29,48,95)(30,96,41)(31,42,89)(32,90,43)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(49,64,144)(50,137,57)(51,58,138)(52,139,59)(53,60,140)(54,141,61)(55,62,142)(56,143,63)(81,101,134)(82,135,102)(83,103,136)(84,129,104)(85,97,130)(86,131,98)(87,99,132)(88,133,100), (1,106,31)(2,32,107)(3,108,25)(4,26,109)(5,110,27)(6,28,111)(7,112,29)(8,30,105)(9,22,95)(10,96,23)(11,24,89)(12,90,17)(13,18,91)(14,92,19)(15,20,93)(16,94,21)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,121,71)(42,72,122)(43,123,65)(44,66,124)(45,125,67)(46,68,126)(47,127,69)(48,70,128)(49,120,134)(50,135,113)(51,114,136)(52,129,115)(53,116,130)(54,131,117)(55,118,132)(56,133,119)(57,82,79)(58,80,83)(59,84,73)(60,74,85)(61,86,75)(62,76,87)(63,88,77)(64,78,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,130,21,134)(18,129,22,133)(19,136,23,132)(20,135,24,131)(25,73,29,77)(26,80,30,76)(27,79,31,75)(28,78,32,74)(33,42,37,46)(34,41,38,45)(35,48,39,44)(36,47,40,43)(65,140,69,144)(66,139,70,143)(67,138,71,142)(68,137,72,141)(81,107,85,111)(82,106,86,110)(83,105,87,109)(84,112,88,108)(89,117,93,113)(90,116,94,120)(91,115,95,119)(92,114,96,118)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128)>;

G:=Group( (1,42,24)(2,17,43)(3,44,18)(4,19,45)(5,46,20)(6,21,47)(7,48,22)(8,23,41)(9,29,128)(10,121,30)(11,31,122)(12,123,32)(13,25,124)(14,125,26)(15,27,126)(16,127,28)(33,57,135)(34,136,58)(35,59,129)(36,130,60)(37,61,131)(38,132,62)(39,63,133)(40,134,64)(49,78,101)(50,102,79)(51,80,103)(52,104,73)(53,74,97)(54,98,75)(55,76,99)(56,100,77)(65,107,90)(66,91,108)(67,109,92)(68,93,110)(69,111,94)(70,95,112)(71,105,96)(72,89,106)(81,144,120)(82,113,137)(83,138,114)(84,115,139)(85,140,116)(86,117,141)(87,142,118)(88,119,143), (1,72,11)(2,12,65)(3,66,13)(4,14,67)(5,68,15)(6,16,69)(7,70,9)(8,10,71)(17,123,107)(18,108,124)(19,125,109)(20,110,126)(21,127,111)(22,112,128)(23,121,105)(24,106,122)(25,44,91)(26,92,45)(27,46,93)(28,94,47)(29,48,95)(30,96,41)(31,42,89)(32,90,43)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(49,64,144)(50,137,57)(51,58,138)(52,139,59)(53,60,140)(54,141,61)(55,62,142)(56,143,63)(81,101,134)(82,135,102)(83,103,136)(84,129,104)(85,97,130)(86,131,98)(87,99,132)(88,133,100), (1,106,31)(2,32,107)(3,108,25)(4,26,109)(5,110,27)(6,28,111)(7,112,29)(8,30,105)(9,22,95)(10,96,23)(11,24,89)(12,90,17)(13,18,91)(14,92,19)(15,20,93)(16,94,21)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,121,71)(42,72,122)(43,123,65)(44,66,124)(45,125,67)(46,68,126)(47,127,69)(48,70,128)(49,120,134)(50,135,113)(51,114,136)(52,129,115)(53,116,130)(54,131,117)(55,118,132)(56,133,119)(57,82,79)(58,80,83)(59,84,73)(60,74,85)(61,86,75)(62,76,87)(63,88,77)(64,78,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,130,21,134)(18,129,22,133)(19,136,23,132)(20,135,24,131)(25,73,29,77)(26,80,30,76)(27,79,31,75)(28,78,32,74)(33,42,37,46)(34,41,38,45)(35,48,39,44)(36,47,40,43)(65,140,69,144)(66,139,70,143)(67,138,71,142)(68,137,72,141)(81,107,85,111)(82,106,86,110)(83,105,87,109)(84,112,88,108)(89,117,93,113)(90,116,94,120)(91,115,95,119)(92,114,96,118)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128) );

G=PermutationGroup([[(1,42,24),(2,17,43),(3,44,18),(4,19,45),(5,46,20),(6,21,47),(7,48,22),(8,23,41),(9,29,128),(10,121,30),(11,31,122),(12,123,32),(13,25,124),(14,125,26),(15,27,126),(16,127,28),(33,57,135),(34,136,58),(35,59,129),(36,130,60),(37,61,131),(38,132,62),(39,63,133),(40,134,64),(49,78,101),(50,102,79),(51,80,103),(52,104,73),(53,74,97),(54,98,75),(55,76,99),(56,100,77),(65,107,90),(66,91,108),(67,109,92),(68,93,110),(69,111,94),(70,95,112),(71,105,96),(72,89,106),(81,144,120),(82,113,137),(83,138,114),(84,115,139),(85,140,116),(86,117,141),(87,142,118),(88,119,143)], [(1,72,11),(2,12,65),(3,66,13),(4,14,67),(5,68,15),(6,16,69),(7,70,9),(8,10,71),(17,123,107),(18,108,124),(19,125,109),(20,110,126),(21,127,111),(22,112,128),(23,121,105),(24,106,122),(25,44,91),(26,92,45),(27,46,93),(28,94,47),(29,48,95),(30,96,41),(31,42,89),(32,90,43),(33,79,113),(34,114,80),(35,73,115),(36,116,74),(37,75,117),(38,118,76),(39,77,119),(40,120,78),(49,64,144),(50,137,57),(51,58,138),(52,139,59),(53,60,140),(54,141,61),(55,62,142),(56,143,63),(81,101,134),(82,135,102),(83,103,136),(84,129,104),(85,97,130),(86,131,98),(87,99,132),(88,133,100)], [(1,106,31),(2,32,107),(3,108,25),(4,26,109),(5,110,27),(6,28,111),(7,112,29),(8,30,105),(9,22,95),(10,96,23),(11,24,89),(12,90,17),(13,18,91),(14,92,19),(15,20,93),(16,94,21),(33,137,102),(34,103,138),(35,139,104),(36,97,140),(37,141,98),(38,99,142),(39,143,100),(40,101,144),(41,121,71),(42,72,122),(43,123,65),(44,66,124),(45,125,67),(46,68,126),(47,127,69),(48,70,128),(49,120,134),(50,135,113),(51,114,136),(52,129,115),(53,116,130),(54,131,117),(55,118,132),(56,133,119),(57,82,79),(58,80,83),(59,84,73),(60,74,85),(61,86,75),(62,76,87),(63,88,77),(64,78,81)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,61,5,57),(2,60,6,64),(3,59,7,63),(4,58,8,62),(9,56,13,52),(10,55,14,51),(11,54,15,50),(12,53,16,49),(17,130,21,134),(18,129,22,133),(19,136,23,132),(20,135,24,131),(25,73,29,77),(26,80,30,76),(27,79,31,75),(28,78,32,74),(33,42,37,46),(34,41,38,45),(35,48,39,44),(36,47,40,43),(65,140,69,144),(66,139,70,143),(67,138,71,142),(68,137,72,141),(81,107,85,111),(82,106,86,110),(83,105,87,109),(84,112,88,108),(89,117,93,113),(90,116,94,120),(91,115,95,119),(92,114,96,118),(97,127,101,123),(98,126,102,122),(99,125,103,121),(100,124,104,128)]])

48 conjugacy classes

class 1  2 3A···3E3F3G3H3I4A4B4C6A···6E6F6G6H6I8A8B12A···12M12N···12U12V12W
order123···333334446···666668812···1212···121212
size112···24444212362···2444454544···412···123636

48 irreducible representations

dim11112222224444
type++++++++-+--
imageC1C2C2C2S3S3D4D6Q16C3⋊D4S32C3⋊Q16D6⋊S3C322Q16
kernelC336Q16C337C8C32×Dic6C3×C324Q8C3×Dic6C324Q8C32×C6C3×C12C33C3×C6C12C32C6C3
# reps111141152104548

Matrix representation of C336Q16 in GL8(𝔽73)

10000000
01000000
007130000
007210000
000007200
000017200
00000010
00000001
,
10000000
01000000
007130000
007210000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
000000072
000000172
,
041000000
1641000000
0015670000
0013580000
00000100
00001000
00000001
00000010
,
6827000000
455000000
0015670000
0013580000
000007200
000072000
00000010
00000001

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,72,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,71,72,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[0,16,0,0,0,0,0,0,41,41,0,0,0,0,0,0,0,0,15,13,0,0,0,0,0,0,67,58,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[68,45,0,0,0,0,0,0,27,5,0,0,0,0,0,0,0,0,15,13,0,0,0,0,0,0,67,58,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C336Q16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_6Q_{16}
% in TeX

G:=Group("C3^3:6Q16");
// GroupNames label

G:=SmallGroup(432,445);
// by ID

G=gap.SmallGroup(432,445);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,64,254,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽